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ABSTRACT

Taking into account the dissipative effect of neutrino-producing reactions, we calculate the amount
of thermal and vibrational energy that can be present in a neutron star at a time £ after its creation in a
supernova explosion.

The results are used to discuss the plausibility of a number of hypotheses advanced in recent years
concerning possible observable properties of neutron stars.

I. INTRODUCTION

If a supernova explosion results from the gravitational collapse of a star’s core into a
neutron star, this neutron star is likely to begin its life with a large amount of thermal
and vibrational energy. The star might conceivably be detectable if a substantial part of
the available energy were converted into electromagnetic radiation.

Unfortunately, calculations show (Chiu and Salpeter 1964; Finzi 1964, 1965a;
Bahcall and Wolf 1965) that most of the thermal energy of a hot, non-vibrating star is
rapidly dissipated by neutrinos produced in the reactions (Urca reactions)

nt+n—-nt+ptestv, (1)
n+pt+e—-nt+ntv. (2)

The rate of decrease of the surface temperature with time can be derived by using the
calculated rates of reactions (1) and (2) to deduce the rate of decrease of the core tem-
perature and by using neutron-star models to relate the core temperature to the surface
temperature. Neutron-star models are, unfortunately, strongly dependent on the as-
sumptions made about nuclear forces. However, from the results of Tsuruta and Cam-
eron (1966a, b), one should probably expect a surface luminosity of about 10% ergs
sec™! for a neutron star a few hundred years old. Most of the photons emitted from the
surface would be soft X-rays.

A star with an X-ray luminosity of 10* ergs sec™? could be detected at a distance of
a few kiloparsecs, with only a moderate improvement of present techniques. However,
the remnant of the supernova in Taurus, and probably the remnants of Tycho’s super-
nova and the supernova in Cassiopeia as well (Friedman, Byram, and Chubb 1967;
Friedman 1967), produce X-rays at a rate of a few times 10% ergs sec™!, substantially
more than the 10% ergs sec™ suggested by the theoretical arguments mentioned above.
At least in the case of the supernova in Taurus, we know directly from measurements of
the X-ray spectrum and the angular size of the source, that the primary source of X-rays
is not the black-body radiation of a neutron star. It would then be quite hard to estab-
lish the existence of a weak, black-body source against the background of the stronger
source.

* On leave from the IV Centro di Astrofisica del CNR, Frascati, Rome, Italy.
1 Present address: Department of Space Science, Rice University, Houston, Texas.
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Like the thermal energy of a hot, non-vibrating star, the vibrational energy of a cold,
vibrating neutron star tends to be dissipated by the Urca reactions (Finzi 19655). We
shall see, however, that the amount of vibrational energy that could still be available a
few weeks after the explosion would probably be consistent with the suggestion (Finzi
1965b) that the light of a supernova comes from the vibrational energy of the neutron
star created in the catastrophic event.! Besides the approximate agreement between the
vibrational energy that can be available in a neutron star and the radiative energy re-
leased by a supernova, there is perhaps another reason for assuming that the radiative
energy originates from some starlike object left after the outburst; it has been pointed
out by Colgate and White (1966) that the radiative energy produced in the sudden out-
burst will be converted into kinetic energy of the ejected shell before it is able to escape
into interstellar space.

To complete the review of conceivable ways of detecting the collapsed body left at
the center of a supernova, we should mention that acceleration of relativistic electrons
seems to occur at the center of the Crab Nebula at the rate of about 10%® ergs sec™!
(Shklovskii 1966). Since the low-density plasma could hardly release this much energy,
it is tempting to speculate that the energy is being pumped into the electrons by some
invisible collapsed body. However, a neutron star almost 1000 years old definitely cannot
release 10% ergs sec™ at the expense of either its thermal-energy content or its vibra-
tions. If we want to stick to the idea that the 1038 ergs sec™ come from the energy stored
in a neutron star and also to remain within the limits of present theoretical ideas, we
can only assume that the relativistic electrons are accelerated at the expense of the
magnetic energy of the star. Large amounts of magnetic energy could be present in a
neutron star (Woltjer 1964).

The rate of energy loss by Urca reactions seems, therefore, to be an important factor
in determining the detectability of neutron stars. Meltzer and Thorne (1967) have sug-
gested, however, that the results deduced for the two limiting cases studied so far (hot,
non-vibrating stars and cold, vibrating stars) may not provide accurate information for
the more general case of a hot, vibrating star. Specifically, the Urca reactions might
steadily transform vibrational energy into thermal energy, and this might result in a
significant increase of the central temperature and of the thermal emission from the
surface.

The neutrino luminosity of a hot, vibrating neutron star has been calculated by Han-
sen (1966) and by Hansen and Tsuruta (1967): however, as we shall explain in § ITI,
these authors have not calculated the rate of change of thermal energy or the rate of
dissipation of vibrational energy. The rate of dissipation of vibrational energy is calcu-
lated in § V of the present paper. The rate of change of thermal energy is the difference
between the rate of dissipation of vibrational energy and the neutrino luminosity.

In § VI we study the evolution of neutron stars that begin their lives with non-zero
vibrational amplitudes and lose thermal and vibrational energy by the Urca reactions
exclusively. We find that the ratio of the vibrational energy to the thermal energy rapid-
ly approaches a constant value. For a particularly simple model considered in detail,
this value is equal to 7; the vibrational energy is 3.5 X 10*° ergs year—'/3,

In § VII we find that the rate of temperature decrease for a vibrating star is generally
slower than for a non-vibrating star, as predicted by Meltzer and Thorne; also, the rate
of vibrational damping is generally faster for a hot star than for a cold star. However,
both these effects are sufficiently small that our previous conclusions concerning ob-
servable properties of neutron stars do not have to be modified. On the other hand, it is
not inconceivable that neutron stars may lose most of either their thermal or their
vibrational energy by some means other than the Urca process. The stars would then be
described by the solution for one of the two limiting cases.

Suppose, for example, that there exists a mechanism for transforming the vibrational

1 The total amount of radiant energy emitted by a type I supernova should be of the order of a few
times 10%? ergs.
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energy of a neutron star into the radiative energy of a supernova (Finzi 19655). After
this has taken place, the neutron star can be described by the solution for a hot, non-
vibrating star.

Alternatively, if gravitational radiation exists in nature and it can be accurately esti-
mated in the weak-field limit, Chau’s results (1967) indicate that this radiation would
very quickly damp the vibrations of a neutron star. In this case, too, the star could
then be described by the solution for a hot, non-vibrating star.

On the other hand, suppose that there exists some heat-transfer mechanism, much
more efficient than the conventional processes considered by Tsuruta and Cameron, that
could carry heat rapidly from the core of a neutron star to the surface. The action of
the Urca process could then be described by the solution for a cold, vibrating star. We
show in § VII that the Urca process transforms only £ of the vibrational energy of a cold
star into neutrino energy, while the balance is transformed into thermal energy, which
is eventually emitted from the surface in the form of black-body radiation. The cold,
vibrating star would thus be a strong X-ray emitter. This model is somewhat artificial,
but it indicates that one cannot completely rule out the possibility that a neutron star
a few hundred years old may have an X-ray luminosity of several times 10% ergs sec™!

Finally, we should mention that our assumption that the Urca processes are the most
powerful neutrino-producing reactions is subject to two provisos: (¢) Superfluidity in the
proton gas is not important. A very large superfluid gap in the spectrum of the proton
gas could reduce the rate of reactions (1) and (2) sufficiently to make other dissipative
reactions more important (Ginzburg and Kirzhnits 1965; Ruderman and Festa 1966;
Wolf 1966). In our present calculations we assume that the superfluid gap, if it exists,
is not large enough to be important at the temperatures and vibrational amplitudes con-
sidered. (b) Negative pions are not present in the neutron star. If negative pions were
present, thermal and vibrational energy could be lost in an extremely short time (Bahcall
and Wolf 1965).

II. CHEMICAL EQUILIBRIUM IN NEUTRON-STAR MATTER

For densities less than 10 gm cm™3, it seems reasonable to picture neutron-star
matter as consisting primarily of neutrons, together with a smaller number of protons
and electrons. Very soon after the supernova explosion, the neutron star will cool off to
temperatures less than 1010 ° K; at these temperatures, the neutron, proton, and electron
gases are degenerate. The thermal conductivity of this degenerate matter is very high,
and the star’s core is thus likely to be isothermal. In this paper, we shall use T to desig-
nate the core temperature.

In a Fermi gas, the probability that an individual-particle state with energy W is occu-
pied is given by {1 + exp [(W — w)/kT]} ! where u is the chemical potential. If one neg-
lects interparticle interactions and assumes that the gas is highly degenerate, one can
write the chemical potential of any fermion species ¢ as the sum of its rest energy and

Fermi energy, i.e.,
M = ?n,'()2 + EF('L) . (3)

The strong interactions modify the proton and neutron chemical potentials; these modi-
fications have been estimated by Wolf (1966). The corrections for the effects of strong
interactions are still sufficiently uncertain, however, that it is not worthwhile to try to
take them consistently into account in the present calculations.

The condition of chemical equilibrium among the neutrons, protons, and electrons
can be expressed easily in terms of the chemical potentials:

Ba = Pp + fe . (4)
III. THE URCA PROCESSES

We consider neutrino emission by reactions (1) and (2) in a highly degenerate gas of
neutrons, protons, and electrons. If the neutron star is not vibrating, then chemical
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equilibrium obtains, and most of the neutrons, protons, and electrons taking part in re-
actions (1) and (2) have energies that differ from their respective chemical potentials
by amounts of the order of £7". The number of available states for each incoming or out-
going particle is then proportional to 2T, the reaction rates consequently are equal to
zero at zero temperature and increase rapidly with increasing temperature.

However, reactions (1) and (2) can also occur in a zero-temperature star that is
vibrating: the chemical potentials of the non-relativistic, strongly interacting neutrons
and protons do not depend on the density in the same way as the chemical potential of
the relativistic, non-interacting electrons. Consequently, the equilibrium condition u, =
up + mo is generally not satisfied during a vibration. The result is that reaction (1)
operates during a contraction, while reaction (2) operates during an expansion. These re-
actions will dissipate the vibrational energy of the star; a fraction of this energy will go
into neutrinos and antineutrinos, while the balance will be transformed into thermal
energy. Therefore, the same reactions (1) and (2) cool the star in one limiting case and
heat the star in the other limiting case.

In the general case, we must follow the time evolution of both the vibrational ampli-
tude and the core temperature. For this purpose, we derive two relations: the first rela-
tion gives the neutrino luminosity of a hot, vibrating neutron star and therefore the rate
of decrease of the total vibrational and thermal energy; the second relation gives the net
rate at which work is done against pressure forces and therefore the rate of loss of vibra-
tional energy alone. Hansen and Tsuruta (Hansen 1966; Hansen and Tsuruta 1967) have
calculated only the total neutrino luminosity and thus have no safe way to decide how
the total loss is divided between the thermal and vibrational energy. Finzi (1965b6) has
calculated the rate of loss of vibrational energy for a zero-temperature vibrating star, but
the method used in his paper does not apply directly to a hot, vibrating star.?

IV. NEUTRINO LUMINOSITY OF A HOT, VIBRATING NEUTRON STAR

Let v, be the volume occupied by a unit mass in a given slab of the neutron star at
dynamical equilibrium, and let v = v, 4 v; be the volume occupied at time ¢ during a
pulsation. The extent to which the slab is out of chemical equilibrium can be character-
ized by un — up — W, which, for small vibrations, is approximately equal to (du./0v —
Aup/0v — Au,./dv)dv.. We introduce a dimensionless parameter #; defined by the relation

_ ((Ona _ Opp _ Ope) v, (5)
v v 9/ kT’

We then let L,(u:,7") be the neutrino luminosity of the unit mass.

It is convenient to express L,(u#;,T) in terms of L,(0,T), the neutrino luminosity per
unit mass in the same slab when the star is not vibrating. Bahcall and Wolf (1965) ex-
press L,(0,T) as the sum of two equal terms representing the contributions of reactions
(1) and (2); their expression for the contribution of reaction (1) is

L®(0,T) = 64r'QGH K, (Cv? | My |% + 3C2 | M4|HP, (6a)
where the phase-space factor P is given by
P = 279 B¢y ~15( 1y, )3, Pr(p) Pr(e)2(ET)3I(0) , (6b)
and
© © © o © 5 g 5 - 1151378
I(O) = fdx1fdx2fdx3 fdx4f (Zx,) H (1 + (4 ”)_ldx,r, = —1-2_036% (60)
—® — o —a ~ — (@ tzgtagtey Ni=1 i=1

In writing equation (6b), we have included a factor (£7")8, which was left out of equation
(31a) of Bahcall and Wolf (1965).

2 We would like to correct two numerical etrors in that paper. A factor of 3 is lacking in the expres-
sion for the vibrational energy Wr (eq. [31] of the present paper). There is a redundant factor of  in
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If we adopt the estimate of Bahcall and Wolf (1965) for the coefficient of P in equa-
tion (6a) and the estimate of Wolf (1966) for the coefficient of 7(0) in equation (6b), we
arrive at the estimate

L,®(0,T) = (3 X 10° ergs g™* sec™) (pnue1/p) (T/10° ° K)? (7)

for the neutrino luminosity due to reaction (1) for the case #, = 0. Here ppye is the
density of nuclear matter, 3.7 X 10 g cm™3.

In order to consider the more general case, #; # 0, we only have to modify the ex-
pression for I. None of the other factors depends on whether or not the star vibrates. The
integration variables x; appearing in equation (6c) were defined by Bahcall and Wolf to
be equal to + (W; — u;)/kT , where W, and u; are the energy and chemical potential of
particle <. The index ¢ runs from 1 to 5, the values 1 and 2 designating the two incoming
neutrons in reaction (1) and the values 3, 4, and 5 designating the outgoing neutron,
proton, and electron; the sign is + for the incoming particles and — for the outgoing
particles. For the case in which the star does not vibrate, we have

M1+M2_M3“M4—#5=07

and we therefore find that the expression
5
2w = (Wit Wy — Wo — Wa— Wi)/kT

represents the energy of the outgoing antineutrinos in units of £7". The integrand in the
expression for 7(0) is thus proportional to the cube of the energy of the antineutrino.
To take the effect of small vibrations into account, we note that

p1 e — ps — pa— ps = kT,

so that the energy of the antineutrino, in units of k7', is given by

5
(Wy+ We — Ws — Wy — Ws)/ET = u, +2x,-.

The desired expression for L,V (u,,T) can thus be obtained simply by substituting for
the quantity 7(0) in equation (6b) the quantity

I(u) = fdxlfdxzfdxsfdmf (u + éxiff[la Ly dms. (8)

— (my+-zotxgtagtuy)

The neutrino luminosity of neutron-star matter in a hot, vibrating star is then simply
given by
L,®(0,T)I(u,)

70) . (9)

In the expression for I(u#;), four integrations can be performed analytically; one then
finds that

LY(u,,T) =

1 _ 1 f(“t)
LY (u,T) = L,Y(0,T) 70) (10a)
where
flw) = ofw —3”;—%_:‘;5‘—‘)—4 dy . (10b)

the expression for AE, the maximum energy available for an Urca reaction. The two errors partially
compensate each other.
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We are interested in the average of the neutrino luminosity over one vibrational
cycle. If #, = u cos wt, we have

LwT) = 2L,0(0,1) £ (11a)
F(0)
where
6 127
F(u) = J'dﬁf ya(yy_,, m:‘ffl) dy and  F(0)=7 7 ~5021. (i1b)

Also, we have introduced a factor 2 in equation (11a) to include the contribution of
reaction (2). The quantity F(u)/F(0) is plotted in Figure 1.

T I I

Fic. 1.—Functions F(«)/F(0) and G(u)/F(0)

V. DAMPING OF VIBRATIONS BY THE URCA PROCESSES

The average rate of dissipation of vibrational energy per unit mass in a slab of neu-
tron-star matter is given by
dw 1 A dv
—d—t——-—;_ofP(t)Bzdt, (12)

where P(f) is the pressure at time ¢ and 7 = 27/w is the period of the vibration. We
assume that 6v;, the time-dependent part of v, is given by

0v, = 6v cos wt ; (13a)

P(t) = Py — 8P cos wt + I1(¢) , (13b)

where II(#) is a very small correction representing the change in pressure due to the oc-
currence of reactions (1) and (2). (We are assuming that no other dissipative mechanisms

we can write

operate.)
Substituting equations (13a) and (13b) in equation (12), we obtain
%ZU - 99— 2 [ sin w0t (14)
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Integrating by parts, and noting that II(¢) has to be accurately periodic, we find that

dw & ana
—_—=— —dt. 15
i Of gy (1)
We now have to calculate dIl/dt. Each single occurrence of reaction(1) in a unit mass
of stellar matter destroys one neutron and adds one proton and one electron. The result-
ing change in pressure is

~ et o o
where #,, #,, and 7, are the numbers of neutrons, protons, and electrons per unit mass.
If the vibrations are small and k7" is much less than the neutron Fermi energy, it is
permissible to calculate d P/dn,, d P/dn,, and d P/dn, for zero temperature and chemical
equilibrium. In the zero-temperature approximation, the pressure P and chemical po-
tential u; satisfy the relation

oP . a,ui .
an; v’

it follows that the decrease in pressure caused by a single occurrence of reaction (1) is
given by

(16)

_ Opn _ Oup _ Ope
AP = v v ov ' an

Within the approximation where d P/d#n,, d P/dn,, and d P/dn, are calculated for zero
temperature and chemical equilibrium, the pressure change due to a single occurrence
of reaction (2) is equal and opposite to the pressure change caused by a single occurrence
of reaction (1). Thus the rate of change of pressure caused by reactions (1) and (2) is
given by

I = koW — Ro@)(2e - S i) (18)

where RW(£) and R (¢) are the rates of reactions (1) and (2) per unit mass.
We can easily deduce the expression for the rate R (u,,T) from the expression for the
neutrino luminosity L,® (%;,7) derived in the previous section. We simply have to re-
move from the phase-space integral I(u,) a factor representing the antineutrino energy;
in the notation used in equation (8), the antineutrino energy is k7'(u, + Z%-1x;). We

thus conclude that
R®(u,T) _ J(uy)

= 9
LOu,T) ~ Tkl (19a)
or
R(l)(ut,T) _ ](ut)
L,®0,7) — I(0)kT’ (19D)
where
J(uw,) = fdx1fdxzfdxsfdx4f (ut +in) IIQ + ¢)dxs . (19c¢)
_(zl+x2+x3+z4+ut) 1=1 =1
We perform four integrations exactly and obtain the expression
R® (u,,T) 1 g(u)
) - 2
LO,T) ~ ¥T F(0)’ (202)
where
— Yy — u, (y _ ut) 20h
g(u) ./0' 1 dy . (20b)
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Using the fact that R®(u;,T) = R®(—u,;,T), we substitute equation (20a) in equa-
tion (18), to obtain

an _ L®O,T) 3un Sy %)
dt =~ kTF(0) 9 [g(u) — g(—u). (21)
Substitution of equation (21) in equation (15) yields the following expression for the

rate of dissipation of vibrational energy:

dw L®0,T) aun Oup  Oue

= = W e _517 f cos wi[g(u;) — g(—wu)ldt.  (22)

If we again assume that #; = # cos wt, define

G(u) =

3 -

bl 2
_Ofd()u cos G_f Yy — u cos O)f dy (23)

gy cos § __l_ 1 4

and use equation (5) to relate §v and #, we finally obtain a convenient expression for the

rate of dissipation of vibrational energy per unit mass:

dw G(u)
)

i = 2L,M0,T) w7~ 7(0) °

An expression for L,(0,7) is given in equation (7); the function G()/F(0) is plotted in
Figure 1.

(24)

VI, TIME EVOLUTION
a) Basic Equations

We can now write down the energy-balance relations that determine the vibrational
amplitude and core temperature as functions of time, assuming that the Urca reactions
are the only dissipative processes operating in the neutron star.

If we assume that the neutrons make the dominant contribution to the thermal energy
Wz and that they form a perfect degenerate gas, we find that

Wy = 3CT?, (25)
where

M
C =~ [5 X 10" ergs g~1(10° ° K)~2] S dM (pnuc1/p)?? . (26)
0

The rate of change of thermal energy is the difference between the rate of dissipation of
vibrational energy and the neutrino luminosity. From equations (11a), (25), and (26),
we thus deduce that

ar

M
Y P COr Ll N

If the star is executing small radial vibrations in a single mode with frequency w, we
can express the displacement &7 of a mass point in terms of a dimensionless amplitude 4
and a function £(r) uniquely defined by the condition to be equal to unity at the center.
We thus write

or(t) = rAE(r) cos wt, (28)

Within the usual linear treatment of stellar vibrations (see, e.g., Ledoux and Walraven
1958), the vibrational energy of the star can be expressed in the form

W = }BA?, (29)
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where

B = f47rr2dr rp(sg +rS ‘5' — 4GMrp£2r—1] (30)

and T is the usual adiabatic coefficient d In P/d In p. In the simple case in which both
I" and £ are independent of 7, we find that

W = 3(I — 2)04? (31)

where Q is the gravitational energy of the star. The rate of change of vibrational energy
is, according to equations (24) and (29), given by

BA % - —2 fdM,L (0, T)[g%i] (32)

To first order, the variation in the specific volume v at a distance r from the center
can be written as

gt = A cos wt[sg(r) +r df(r)] (33)
and, using equation (5), we can write
u = alr)z, (34)
where J J p d
= 2| 0Fn _ Ghp _ Ok as
a(r) k o a3 dr, ’ (35)
z= A/T. (36)

It is convenient to rewrite equations (27) and (32) using z and T as dependent vari-
ables. After some manipulation, we obtain

T ,O/'er[z—g%l][G(az) _ Fad)], 37)
o1z fd [%—”%%—)][F(az) _ (1 + Fi—z)a(az)] . (38)

b) Special Cases

Given the initial values z; and T'; of the parameter 2z and temperature 7', one can inte-
grate equations (37) and (38) numerically to obtain z and T at any subsequent time.
However, equations (37) and (38) can easily be integrated analytically for three special
values of z;.

Solution 1: 3, =0, T; > 0. If z = 0 at t = 0, then z will always remain zero. Equa-
tion (37) can then be integrated trivially, and one finds that

T 124
T: CT?

- [1 4 fdM,L (0, Tw)] ", (39)

This result applies to the case of a non-vibrating star, which was previously treated
by Finzi (1965a) and by Bahcall and Wolf (1965).
Solution 2: z; = 2o, T; > 0, where 2, is the solution to the equation

O}er[%%(—?’ﬁ?][F(azc) — (1 + ]—3%2 G(azc)] ~0. (40)
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If 2 = z. at ¢t = 0, then z will always be equal to z.. We then obtain

T 12t ™M G(az:) ~1/6
I = — 1)
T [1+ B Bf‘L, 0,79 oy dM] . (41a)

The vibrational amplitude is given by
4 =3T. (41b)

The constancy of z in time implies that the ratio between the vibrational and thermal
energies has the constant value Bz2/C.

Solution 3: 2; = o T; > 0. In this case the temperature initially increases while z
decreases, rapidly approaching z.. Except for extremely small values of ¢, this solution
practically coincides with solution 2, with 7', = «. We then obtain

12t % L,9(0,T,) G(az) s
— 2
T [ Bax e er] , (42a)

A=zT. (42b)

¢) Integrations in the General Case

Equations (37) and (38) can be integrated numerically for arbitrary initial values of z.
Dividing equation (37) by equation (38) and integrating, one can obtain 7" as a function
of z:

T(2)

z dy M
26 e (S % LastfGe) — FaILOOT)
T’i z; 3 0

(43)
X %.:fl'er[F(az’) —~ (1 + ]%)G(az')]L,<l>(o,T)§_l>.

If we introduce equation (43) into equation (38), we can also express ¢ as a function of z:

1(z) =T ﬁ_fdz 2|

1

(44)
x { Lol dlren = (14 e ]|

The integrations involved in equations (43) and (44) can easily be carried out
numerically if p, T', v(u./0v — du,/0v — du./dv), and £ are known at every point in the
star. However, the present level of understanding of the strong interactions does not
allow us to determine these quantities reliably. As a consequence, the neutrino luminos-
ity of a non-vibrating neutron star is somewhat uncertain, and the uncertainty is con-
siderably more severe when vibrations are considered.

In view of the large uncertainties, we perform the integrations of equations (43) and
(44) only for an extremely crude model of a neutron star. We feel that a simple model
will serve just as well as a complicated one to illustrate the behavior of the solutions.

We thus consider a star with constant density p equal to 2pnye1 and with a mass equal
to 0.64 M o. We also assume that £(r) = 1 everywhere in the star. We treat the neutron
gas as a perfect non-relativistic Fermi gas and thus set T' equal to §; using equation
(5) of Bahcall and Wolf (1965¢), we have

o O _ On _ OMe) _ 1p () ~ 36.5 MeV . (45)
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From equation (45) and equation (37b) we find that a = 1270 X 10° ° K. The gravita-
tional binding energy @ of the star is 0.9 X 10°3 ergs; for the case £ = 1 and I = 3, the
quantity B, which is defined by equation (30), is equal to Q. Equation (26) gives the
value 4 X 10?° ergs (° K)™2 for C.

For the case of a constant-density star, we can set az, equal to a constant %, and write
equation (40) in the form

u?[F(u.)/G(u.) — 1] = Ca?/B. (46)
We plot #%, as a function of Ca?/B in Figure 2. In the present case, Ca?/B is approximate-

ly equal to 7.4, which implies that u, =~ 7.2. The corresponding value of 2. is 5.66 X
102(°K)™.

3—

T (VIBRATING)

K—/T (NON-VIBRATING)
2

1

| | | | I |

0 10 20 30 40 50
Ca¥s

F16. 2.—Quantities %, and T'(vibrating)/7 (non-vibrating) plotted as functions of Ca?/B. The plot of
T'(vibrating)/T'(non-vibrating) indicates the extent to which vibrations can increase the temperature
of a neutron star; the quantity Ca?/B depends on the details of the structure of the neutron star.

The results of the integrations of equations (43) and (44) are plotted in Figure 3. The
solid lines represent the simple solutions corresponding to #; = g, =0, u; = 3, = ©,
and u; = 7.2, z; = 5.66 X 1072 (° K)~'. The value of Bz2/C, the ratio of vibrational
energy to thermal energy, is approximately 7 for this solution. Solutions corresponding
to a few other values of %, are represented by dashed lines. We can summarize the content
of Figure 3 as follows:

i) For u; > 7.2 the vibrational amplitude falls rapidly at the beginning, while the
temperature either rises or, in some cases, falls slowly. The ratio z of vibrational ampli-
tude to temperature rapidly approaches its equilibrium value of 5.66 X 1072 (°K)~. The
vibrational amplitude and temperature always stay between the values given by the
analytic formulae for #, = © and u; = 7.2.

ii) For #; < 7.2 the temperature falls rapidly, the vibrational amplitude less rapidly,
until the ratio of vibrational amplitude to temperature reaches 5.66 X 10~ (°K)%.
The vibrational amplitude and temperature remain between the values given by the
analytic formulae for #; = 7.20 and #; = 0.

It is clear from Figure 3 that the knowledge of the three limiting cases described in
§ VIb gives a good indication of the variation of temperature and vibrational amplitude

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1968ApJ...153..835F

J. 2 1153 835D

BAD

rt

846 A. FINZI AND R. A. WOLF Vol. 153

with time for other initial values of z. In fact, unless the initial vibrational amplitude
is extremely small, the solution rapidly approaches the asymptotic solution given by
equations (41a) and (41b).

VII. COMPARISON WITH PREVIOUS RESULTS

We want to estimate the effect of vibrations on the rate at which a neutron star cools.
In particular, we are interested in cases where the stellar temperature has had time to
decrease substantially below its initial value; at such long times, the temperature of a
vibrating star can be estimated from equation (41a) and is approximately proportional

008

0 06

A 0.04

0 02

Ui=194
r Ui=0
'..
NTTE AT BT P RV A | i . 1

001 01 12 510 20 50 100 200 500 1000 2000

TIME (YEARS)

F16. 3.—Vibrationa! amplitude 4 and temperature T as functions of time. The curve marked #; = 0
corresponds to a non-vibrating star. The curve marked #; = « corresponds to a star that started with a
very large vibrational amplitude. The calculations were carried out for an idealized neutron star with a
constant density of 2pgy, and a mass of 0.64 Mo. Using expression (31) for Wr, taking @ = 0.9 X 105
ergs and I' = §, the upper plot gives the asymptotic value 3.5 )X 10% ergs year—1/3 for the vibrational
energy.

to £/, Using equation (39) to estimate the temperature of a non-vibrating star at long
times, we then obtain

T(vibrating) Bz ' _, o
T(non-vibrating) % C '0/‘ LY (0,1)F(0)dM,

y (47)
X [ofT-SL,a) (O,T)G(uc)er]—I}”d,

where u, = a(r)z..
For simplicity, let us consider a star in which a is independent of . We then have
T'(vibrating) [Cac2 G(uc)]‘”6

T(non-vibrating) ~ LBu:? F(0) )

(48)
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The value of u.(=az,) can be calculated as a function of Ca?/B, using equation (41).
The resulting values of %, and T'(vibrating)/7 (non-vibrating) are plotted for a constant-
density star in Figure 2. Except for the unlikely case where Ca?/B < 1, we see that
T(vibrating) is only slightly greater than T'(non-vibrating). For the case considered in
§ VII¢, Ca?/B is approximately equal to 7.4, and

T(vibrating)
T(non-vibrating) 1.12. (49)

The results of Tsuruta and Cameron (1966¢) indicate that the surface temperature
T . of a neutron star is roughly proportional to the core temperature. Equation (49) and
Figure 2 therefore indicate that the photon luminosity, which is proportional to T'.*, is
not changed dramatically by the existence of vibrations. However, it should be pointed
out that all the temperature calculations presented so far are based on the assumption
that the rate of energy loss by the Urca processes is large compared to the photon
luminosity. If this assumption is relaxed, the effect of vibrations can become more
dramatic, as we shall see at the end of this section.

We also want to evaluate the effect of temperature on the rate of dissipation of vibra-
tional energy. As we pointed out in § I, a cold, vibrating star could exist in nature if
there were some mechanism for carrying heat from the interior to the surface much more
efficient than those considered so far. In this case, the ratio z of vibrational amplitude 4
to temperature T would always be much greater than its equilibrium value 2., which is
given by equation (40). The dimensionless parameter #( =az) would also be much
greater than its equilibrium value, which was found to be about 7.2 for the case studied
at the end of § VL

Figure 1 suggests that the ratio F(u)/G(u) approaches an asymptotic value as # be-
comes much larger than 7.2. Using equations (11a) and (23), one can show that this
asymptotic value is . In a cold neutron star, three-eighths of the vibrational energy
dissipated by the Urca reactions thus is radiated away in the form of neutrinos, while
the balance is converted into thermal energy.

From equation (23) the asymptotic expression for G(%) is found to be

us

G(u) = 753

(50)

introducing equation (50) into equation (32), we find for 4 the differential equation

a4 1 ¥ r,00,7)
=82 _ 2 e U2 s
A 5 384‘[ BTF(0) abdM. , (51)
which can be integrated to give
M
~ L,®(0,T) -1/

= = 1/6 v A2/ 8

AT =0) = 2 [of SE0) adM,] : (52)

On the other hand, the vibrational amplitude of a hot neutron star is given by equa-
tions (41a) and (41b). Taking the ratio of these two results for times long enough that
the vibrational amplitude has dropped significantly below its initial value, we obtain

__._______A(TE A/z°) ~ __1_ " —87 1) ) 8
A(T = 0) -~ ;768 -[T' L, (07T1)(azc) M,

(53)
x [ 0fM:r,.—s LOWOT)GCes)dn, | |,
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or, for a star with constant «,

AT = A/z) _ TR 18
AT =0 [ 768G(uc)] (54)
For the numerical example considered in § VIc, we then have
AT = 4/5)
AT=0 = 0.92. (55)

The effect of temperature on the vibrational amplitude does not seem to be dramatic.

On the other hand, the surface emission of this hypothetical cold, vibrating neutron
star could be significantly greater than that of a hot, vibrating star. Five-eighths of the
vibrational energy dissipated by the Urca reactions would eventually be radiated from
the surface. Taking the simple uniform-density model considered above and using equa-
tions (29) and (52), we find a surface luminosity of 1.3 X 10%7 ergs sec™ for a star 300
years old.

We would like to thank Drs. S. Tsuruta and C. Hansen for a preprint of their latest
paper. One of us (A. F.) wishes to acknowledge the support of the National Aeronautics
and Space Administration.
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